17322 measured reflections

 $R_{\rm int} = 0.036$

2917 independent reflections

2602 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Carbamoyl-2,2-dimethylcyclopentane-1,1-dicarboxylic acid

Volodymyr Knizhnikov, Marian Gorichko* and Zoya Voitenko

National Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01033 Kviv, Ukraine Correspondence e-mail: 417lab@gmail.com

Received 17 January 2012; accepted 8 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.099; data-to-parameter ratio = 17.9.

In the title compound, $C_{10}H_{15}NO_5$, the five-membered cyclopentane ring has an envelope conformation, with four atoms lying in a plane (mean deviation = 0.0213 Å), while the fifth atom deviates from this plane by 0.626 (2) Å. A threedimensional structure is formed through N-H···O and O-H···O hydrogen bonds between the amide and carboxylic acid groups and both carboxylic acid and amide O-atom acceptors.

Related literature

For background literature, see: Carter (1958); Nieto et al. (1998); Noyes (1894). For the synthetic procedure, see: Polonski (1982, 1983).

Experimental

Crystal data

C10H15NO5 $M_r = 229.23$ Tetragonal, P4₃2₁2 a = 9.4424 (1) Å c = 24.7343 (5) Å V = 2205.28 (6) Å³

L = 0
Mo $K\alpha$ radiation
$\mu = 0.11 \text{ mm}^{-1}$
T = 296 K
$0.36 \times 0.20 \times 0.19~\text{mm}$

Data collection

Bruker SMART APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\rm min} = 0.961, \ T_{\rm max} = 0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.099$	independent and constrained
S = 1.06	refinement
2917 reflections	$\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$
163 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H15\cdots O2^{i}$ $N1-H16\cdots O4^{ii}$ $O3-H17\cdots O1^{iii}$ $O5-H18\cdots O1^{iv}$	0.869 (19) 0.89 (2) 0.76 (2) 0.87 (2)	2.23 (2) 2.09 (2) 1.91 (2) 1.80 (2)	3.0474 (15) 2.9610 (17) 2.6691 (15) 2.6569 (14)	157.6 (18) 166.2 (19) 174 (2) 168 (2)

Symmetry codes: (i) $y + \frac{1}{2}$, $-x + \frac{3}{2}$, $z + \frac{1}{4}$; (ii) $y + \frac{1}{2}$, $-x + \frac{1}{2}$, $z + \frac{1}{4}$; (iii) $-y + \frac{3}{2}$, $x - \frac{1}{2}$, $z - \frac{1}{4}$; (iv) y, x - 1, -z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2175).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Carter, K. N. (1958). J. Org. Chem. 23, 1409-1411.

Nieto, M. I., Blanco, J. M., Caamano, O., Fernandez, F. & Gomez, G. (1998). Tetrahedron, 54, 7819-7830.

Noyes, W. A. (1894). J. Am. Chem. Soc. 16, 500-511.

- Polonski, T. (1982). J. Chem. Soc. Chem. Commun. pp. 208-209.
- Polonski, T. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 305-309.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o725 [doi:10.1107/S1600536812005636]

3-Carbamoyl-2,2-dimethylcyclopentane-1,1-dicarboxylic acid

Volodymyr Knizhnikov, Marian Gorichko and Zoya Voitenko

Comment

Camphoric acids and their derivatives, especially those with specific absolute configurations, are very useful intermediates in organic synthesis (Nieto *et al.*, 1998). Molecules bearing camphoric acid moieties could be used as building blocks in self-assembly studies *via* coordinative and hydrogen bonds leading to network materials with interesting topologies and functions. Herein, we report the synthesis and crystal structure of the title compound (II), the novel 3-(aminocarbonyl)-2,2-dimethylcyclopentane-1,1-dicarboxylic acid, $C_{10}H_{15}NO_5$ (Fig. 1) obtained as a minor product in the ring-opening reaction of 8,8-dimethyl-2,4-dioxo-3-oxabicyclo[3.2.1]octane-1-carboxylic acid (I) (Polonski, 1983) (see Fig. 2).

In the structure of (II) (Fig. 1), the five-membered C1—C5 ring has an envelope conformation, which is typical for this class of compounds. The C1—C3—C4—C5 atoms lie in a plane (mean deviation, 0.0213 Å) while C2 deviates from this plane by 0.626 (2) Å. The bond lengths C1—C2 and C2—C3 [1.5707 (16) and 1.5752 (17) Å respectively] are somewhat longer than the normal single Csp³—Csp³ bond length. Other C—C bond lengths observed in this compound are unremarkable and fall in the range of 1.5285 (19)–1.5489 (16) Å. A three-dimensional network structure is formed through intermolecular N—H…O hydrogen bonds between the amide and carboxyl groups and O—H…O hydrogen bonds between the carboxylic acid groups and amide O-atom acceptors (Table 1).

Experimental

The synthesis of the cyclic anhydride (I) (Fig. 2) was carried out according to the method described by Polonski (1983). Compound (I) (1.00 g, 4.36 mmol) was added in three portions to the cooled (-40 °C) saturated solution of ammonia in methanol (10 ml). The resulting solution was stirred for 1 h and white needles formed during this period were filtrated off. These needles can be easily dissolved in water. The mother liquor was acidified with dilute hydrochloric acid to pH 3 and allowed to stand for 24 h. The resulting white needles of the title compound were collected by filtration. Yield: 200 mg, 18.5%; m.p. 237–238 °C. 1H NMR (400 MHz, [D6]DMSO, TMS, δ): 0.81 (s, 3 H), 1.31 (s, 3 H), 1.62–1.71 (m, 1 H), 1.88–1.95 (m, 1H), 1.97–2.07 (m, 1 H), 2.25–2.33 (m, 1 H), 2.98 (t, 3 J = 9.6 Hz, 1 H), 6.84 (s, 1 H), 7.18 (s, 1 H), 12.63 (br. s, 2 H); 13C {1H} NMR (100.70 MHz, [D6]DMSO, TMS, δ): 20.8, 23.1, 23.1, 30.4, 46.2, 52.9, 67.1, 171.5, 173.2, 173.6; (KBr plates, cm -1): 3421, 3328, 3254, 3008, 2976, 2941, 2777, 2595, 1737, 1721, 1651, 1551, 1263, 1242, 1207, 637.

Refinement

Carboxylic acid and amide H atoms were located in a difference Fourier synthesis and both positional and displacement parameters were allowed to refine. Other H atoms were positioned geometrically, with C—H = 0.96–0.98 Å and were allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}$ (methine or methylene C) or $1.5U_{eq}$ (methyl C). In the absence of a suitable heavy atom, the absolute configuration of the title compound could not be determined (1146 Friedel pairs).

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure and atom numbering scheme for the title compound, showing 50% probability displacement ellipsoids.

Figure 2

The synthetic route to the title compound (II).

3-Carbamoyl-2,2-dimethylcyclopentane-1,1-dicarboxylic acid

Crystal data	
C ₁₀ H ₁₅ NO ₅	V = 2205.28 (6) Å ³
$M_r = 229.23$	Z = 8
Tetragonal, $P4_32_12$	F(000) = 976
a = 9.4424 (1) Å	$D_{\rm x} = 1.381 {\rm Mg m^{-3}}$
c = 24.7343(5) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Cell parameters from 6074 reflections
$\theta = 2.3 - 28.8^{\circ}$
$\mu = 0.11 \text{ mm}^{-1}$

Data collection

Siemens SMART CCD area-detector	17322 measured reflections
diffractometer	2917 independent reflections
Radiation source: fine-focus sealed tube	2602 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
ω scans	$\theta_{\text{max}} = 29.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2008)	$k = -8 \rightarrow 12$
$T_{\min} = 0.961, T_{\max} = 0.979$	<i>l</i> = −33→33
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.099$	H atoms treated by a mixture of independent
S = 1.06	and constrained refinement
2917 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0615P)^2 + 0.0801P]$
163 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

T = 296 KBlock, colourless $0.36 \times 0.20 \times 0.19 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.74432 (13)	0.23875 (13)	0.07554 (4)	0.0200 (2)	
H1	0.8314	0.2766	0.0595	0.024*	
C2	0.63594 (14)	0.21880 (14)	0.02794 (5)	0.0224 (3)	
C3	0.69569 (13)	0.07984 (13)	0.00103 (5)	0.0193 (2)	
C4	0.74117 (16)	-0.01308 (14)	0.04958 (5)	0.0253 (3)	
H4A	0.6643	-0.0751	0.0604	0.030*	
H4B	0.8224	-0.0708	0.0400	0.030*	
C5	0.77903 (16)	0.08881 (15)	0.09546 (5)	0.0263 (3)	
H5A	0.8789	0.0813	0.1043	0.032*	
H5B	0.7243	0.0667	0.1276	0.032*	
C6	0.48721 (16)	0.1928 (2)	0.05104 (6)	0.0395 (4)	
H6A	0.4565	0.2753	0.0705	0.059*	
H6B	0.4897	0.1131	0.0751	0.059*	
H6C	0.4225	0.1739	0.0220	0.059*	

C7	0.6348 (2)	0.34634 (17)	-0.00998 (6)	0.0383 (4)
H7A	0.5754	0.3264	-0.0406	0.057*
H7B	0.7295	0.3653	-0.0221	0.057*
H7C	0.5988	0.4275	0.0089	0.057*
C8	0.69559 (14)	0.34575 (14)	0.11739 (5)	0.0215 (3)
C9	0.59168 (14)	0.00109 (15)	-0.03551 (5)	0.0244 (3)
C10	0.82601 (14)	0.11865 (14)	-0.03276 (5)	0.0224 (3)
N1	0.64079 (14)	0.30205 (14)	0.16346 (4)	0.0266 (3)
O1	0.70824 (12)	0.47490 (10)	0.10779 (3)	0.0319 (3)
O2	0.93895 (11)	0.14705 (13)	-0.01307 (4)	0.0359 (3)
O3	0.80177 (13)	0.12032 (15)	-0.08521 (4)	0.0412 (3)
O4	0.48796 (12)	0.05118 (13)	-0.05648 (4)	0.0394 (3)
05	0.62860 (13)	-0.13224 (12)	-0.04156 (5)	0.0401 (3)
H15	0.618 (2)	0.369 (2)	0.1859 (7)	0.040 (5)*
H16	0.628 (2)	0.211 (2)	0.1705 (8)	0.045 (5)*
H17	0.869 (2)	0.144 (2)	-0.0996 (9)	0.054 (6)*
H18	0.568 (3)	-0.176 (3)	-0.0621 (8)	0.062 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0188 (6)	0.0222 (6)	0.0189 (5)	0.0011 (5)	0.0020 (4)	-0.0030 (4)
C2	0.0204 (6)	0.0241 (6)	0.0228 (5)	0.0050 (5)	-0.0013 (5)	-0.0039 (5)
C3	0.0172 (6)	0.0216 (6)	0.0191 (5)	0.0013 (5)	0.0001 (4)	-0.0025 (4)
C4	0.0321 (7)	0.0211 (6)	0.0227 (5)	0.0000 (6)	-0.0030(5)	0.0005 (4)
C5	0.0322 (8)	0.0250 (7)	0.0216 (5)	0.0059 (6)	-0.0030(5)	-0.0014 (5)
C6	0.0172 (7)	0.0601 (11)	0.0413 (7)	0.0031 (7)	0.0031 (6)	-0.0200 (7)
C7	0.0556 (10)	0.0277 (7)	0.0316 (7)	0.0139 (7)	-0.0111 (7)	0.0006 (6)
C8	0.0202 (6)	0.0232 (6)	0.0213 (5)	-0.0012 (5)	0.0015 (4)	-0.0042 (5)
C9	0.0213 (6)	0.0295 (7)	0.0225 (5)	-0.0019 (5)	0.0010 (5)	-0.0042 (5)
C10	0.0210 (6)	0.0241 (6)	0.0221 (5)	0.0035 (5)	0.0031 (5)	-0.0020 (5)
N1	0.0347 (7)	0.0232 (6)	0.0221 (5)	-0.0004 (5)	0.0082 (5)	-0.0030 (4)
01	0.0462 (6)	0.0207 (5)	0.0289 (5)	-0.0035 (4)	0.0146 (4)	-0.0027 (4)
O2	0.0201 (5)	0.0592 (7)	0.0286 (5)	-0.0042 (5)	0.0023 (4)	-0.0063 (5)
O3	0.0310 (6)	0.0710 (9)	0.0214 (5)	-0.0108 (6)	0.0030 (4)	0.0042 (5)
O4	0.0319 (6)	0.0432 (7)	0.0429 (6)	0.0057 (5)	-0.0169 (5)	-0.0058 (5)
05	0.0369 (6)	0.0322 (6)	0.0512 (6)	0.0027 (5)	-0.0174 (5)	-0.0171 (5)

Geometric parameters (Å, °)

C1—C8	1.5180 (16)	C6—H6B	0.9600
C1—C5	1.5344 (17)	С6—Н6С	0.9600
C1—C2	1.5713 (16)	С7—Н7А	0.9600
C1—H1	0.9800	С7—Н7В	0.9600
C2—C7	1.5265 (19)	C7—H7C	0.9600
C2—C6	1.536 (2)	C8—O1	1.2481 (16)
C2—C3	1.5757 (17)	C8—N1	1.3177 (16)
С3—С9	1.5279 (18)	C9—O4	1.2049 (17)
C3—C10	1.5319 (18)	C9—O5	1.3149 (18)
C3—C4	1.5480 (16)	C10—O2	1.2026 (17)

C4—C5	1.5301 (17)	C10—O3	1.3175 (16)
C4—H4A	0.9700	N1—H15	0.869 (19)
C4—H4B	0.9700	N1—H16	0.89 (2)
C5—H5A	0.9700	O3—H17	0.76 (2)
C5—H5B	0.9700	O5—H18	0.87(2)
C6—H6A	0.9600		0.07 (2)
	0.9000		
C8—C1—C5	117.38 (10)	C1—C5—H5B	110.3
C8—C1—C2	113.16 (10)	H5A—C5—H5B	108.6
C5—C1—C2	105.61 (10)	С2—С6—Н6А	109.5
C8—C1—H1	106.7	С2—С6—Н6В	109.5
C5—C1—H1	106.7	H6A—C6—H6B	109.5
C2—C1—H1	106.7	С2—С6—Н6С	109.5
C7—C2—C6	110.36 (13)	H6A—C6—H6C	109.5
C7—C2—C1	111.75 (11)	H6B—C6—H6C	109.5
C6—C2—C1	109.63 (10)	С2—С7—Н7А	109.5
C7—C2—C3	113.57 (10)	С2—С7—Н7В	109.5
C6—C2—C3	110.58 (12)	H7A—C7—H7B	109.5
C1—C2—C3	100.55 (9)	С2—С7—Н7С	109.5
C9—C3—C10	108.06 (10)	H7A—C7—H7C	109.5
C9—C3—C4	111.18 (11)	H7B—C7—H7C	109.5
C10—C3—C4	109.63 (11)	O1—C8—N1	120.54 (12)
C9—C3—C2	115.15 (10)	O1—C8—C1	119.44 (11)
C10—C3—C2	108.59 (10)	N1—C8—C1	120.02 (12)
C4—C3—C2	104.10 (9)	O4—C9—O5	122.84 (12)
C5—C4—C3	106.48 (10)	O4—C9—C3	125.88 (13)
C5—C4—H4A	110.4	O5—C9—C3	111.28 (11)
C3—C4—H4A	110.4	O2—C10—O3	123.37 (12)
C5—C4—H4B	110.4	O2—C10—C3	123.01 (11)
C3—C4—H4B	110.4	O3—C10—C3	113.61 (11)
H4A—C4—H4B	108.6	C8—N1—H15	115.0 (12)
C4—C5—C1	106.98 (10)	C8—N1—H16	121.8 (13)
С4—С5—Н5А	110.3	H15—N1—H16	123.2 (18)
C1—C5—H5A	110.3	C10—O3—H17	108.7 (17)
C4—C5—H5B	110.3	С9—О5—Н18	110.7 (17)
			. ,
C8—C1—C2—C7	72.70 (14)	C8—C1—C5—C4	147.86 (12)
C5—C1—C2—C7	-157.59 (11)	C2-C1-C5-C4	20.66 (14)
C8—C1—C2—C6	-49.99 (15)	C5-C1-C8-O1	157.82 (13)
C5—C1—C2—C6	79.72 (14)	C2-C1-C8-O1	-78.73 (15)
C8—C1—C2—C3	-166.49 (10)	C5-C1-C8-N1	-22.01 (18)
C5—C1—C2—C3	-36.77 (12)	C2-C1-C8-N1	101.44 (14)
C7—C2—C3—C9	-79.30 (14)	C10—C3—C9—O4	-100.66 (15)
C6—C2—C3—C9	45.41 (15)	C4—C3—C9—O4	138.99 (14)
C1—C2—C3—C9	161.20 (10)	C2—C3—C9—O4	20.92 (19)
C7—C2—C3—C10	41.99 (15)	C10—C3—C9—O5	79.70 (14)
C6—C2—C3—C10	166.70 (10)	C4—C3—C9—O5	-40.65 (15)
C1—C2—C3—C10	-77.51 (11)	C2—C3—C9—O5	-158.73 (11)
C7—C2—C3—C4	158.73 (12)	C9—C3—C10—O2	-159.99 (13)

supplementary materials

C6—C2—C3—C4	-76.56 (13)	C4—C3—C10—O2	-38.67 (17)
C1—C2—C3—C4	39.23 (12)	C2-C3-C10-O2	74.46 (16)
C9—C3—C4—C5	-152.41 (11)	C9—C3—C10—O3	21.14 (16)
C10—C3—C4—C5	88.17 (12)	C4—C3—C10—O3	142.46 (12)
C2—C3—C4—C5	-27.84 (14)	C2—C3—C10—O3	-104.41 (13)
C3—C4—C5—C1	4.56 (15)		

Hydrogen-bond geometry (Å, °)

	D—H	H····A	D···A	<i>D</i> —H··· <i>A</i>
N1—H15···O2 ⁱ	0.869 (19)	2.23 (2)	3.0474 (15)	157.6 (18)
N1—H16…O4 ⁱⁱ	0.89 (2)	2.09 (2)	2.9610 (17)	166.2 (19)
O3—H17…O1 ⁱⁱⁱ	0.76 (2)	1.91 (2)	2.6691 (15)	174 (2)
O5—H18···O1 ^{iv}	0.87 (2)	1.80 (2)	2.6569 (14)	168 (2)

Symmetry codes: (i) *y*+1/2, -*x*+3/2, *z*+1/4; (ii) *y*+1/2, -*x*+1/2, *z*+1/4; (iii) -*y*+3/2, *x*-1/2, *z*-1/4; (iv) *y*, *x*-1, -*z*.